Ausgangsbedingungen, Ablauf und Ende der biologischen Evolution
- Sind sie "bedingt" durch ein Ziel?
|
Abb. 1: Brauner Mausmaki (Microcebus rufus), Madagaskar
(Fotograf: Alex Dunkel) |
Der britische Paläontologe Simon Conway Morris (geb. 1951) hat 2013 einen Aufsatz herausgebracht (1), in dem sehr grundlegende, neue Gedankengänge über die biologische Evolution der Arten auf unserer Erde enthalten sind. In diesem Aufsatz arbeitet er auf so etwas hinaus wie eine Erweiterung des "Anthropischen Prinzips" der Astrophysik und Kosmologie (Wiki) auf die Biologie.
Dabei werden viele neue Gedanken erörtert, etwa der Gedanke der Inhärenz, insbesondere aber der Gedanke, wonach die biologische Evolution die Grenzen der erreichbaren Komplexität im Wesentlichen auch schon erreicht habe. Und diese Gedanken werden aus der breiten Auseinandersetzung mit der neuesten Forschungsliteratur abgeleitet.
Zu dem Gedanken, daß die biologische Evolution auf der Erde zu Ende sein könnte, kündigte Simon Conway Morris schon im September 2013 eine wissenschaftliche Konferenz in Cambridge an für das Folgejahr unter dem Titel "Gibt es Grenzen für die Evolution?" ("Are there limits to evolution?") (MoL 9/2013). Sie hat im September 2014 stattgefunden (MoL 10/2014). Viele Tagungsbeiträge erschienen im Dezember 2015 in einem Themenheft der Zeitschrift "Interface Focus" (2). Zwischenzeitlich war das Thema im August 2015 im "Journal of Theoretical Biology" (3) aufgegriffen worden.
Das heißt also, die Anfangsbedingungen des Universums, die Feinabstimmung seiner Naturkonstanten, sowie die physikalischen, chemischen und biochemischen Beschaffenheiten, die sich später und eher zufällig und sehr speziell hier bei uns auf der Erde ergeben haben, schränken laut dieses Gedankens sehr stark ein,
- was evolvieren kann in diesem Universum,
- wie es evolvieren kann und
- wie weit es evolvieren kann.
Conway Morris arbeitet darauf hinaus, daß diese Dinge schon sehr früh in der Evolution festgelegt sind in sehr einfachen Organismen (er nennt das "Inhärenz", die er an einer Stelle auch als "Homunculus-artig" bezeichnet). Er arbeitet darauf hinaus aufzuzeigen, daß der Ablauf der Evolution mit diesen frühen Anfangsbedingungen ziemlich stark vorgegeben ist und gar nicht so viel anders ablaufen könnte, wenn sie noch einmal ablaufen würde irgendwo anders im Universum. Am Wesentlichsten aber ist - und am Neuesten von allem, was er sagt -, daß die Evolution vermutlich auch nicht mehr weiter gehen kann als sie bis heute fortgegangen ist, daß sie alles das an Komplexität, was sie erreichen kann - vor allem das Großhirn des Menschen, aber auch aufzeigbar an vielen anderen Bereichen - auch schon erreicht hat. Auf diesen letzteren zentralen Gedanken werden wir uns im folgenden fokussieren, wenn wir auch zugleich beschreiben wollen, wie Conway Morris ihn in seine übrigen gedanklichen Auseinandersetzungen einfügt.
Denn auch das Prinzip der Inhärenz sagt ja - so wie das schon zuvor von Conway Morris in das grundlegende biologische Denken eingeführte Prinzip der Konvergenz -, daß es so etwas wie "Voraussicht" gibt in der Evolution, so etwas wie Zielgerichtetheit, daß schon sehr früh festgelegt ist, was sich erst später mit Hilfe des früh Festgelegten entfaltet und entfalten kann.
Aussagen von Seiten der Philosophie ...
Sowohl die astrophysikalischen Forschungen zum Anthropischen Prinzip wie nun Simon Conway Morris können mit solchen Entwicklungen schon fast in der Wortwahl, bzw. in der Formulierung parallelen Entwicklungen in der Philosophie des 20. Jahrhunderts gegenüber gestellt werden und auf inhaltliche Überschneidungen mit ihnen hin überprüft werden (6-8). Ohne daß die Forscher mit hoher Wahrscheinlichkeit sich mit diesen parallelen Entwicklungen in der Philosophie des 20. Jahrhunderts beschäftigt haben werden. "Wie von selbst" also würden sich gegenwärtig in der wissenschaftlichen Forschungsliteratur Überschneidungen mit parallelen, bzw. vorausgehenden grundlegenderen Erkenntnissen und Aussagen in der Philosophie ergeben. So war von Seiten der Philosophie als grundlegender metaphysischer Gedanke zu Entstehung des Weltalls formuliert worden (7, S. 68f):
sich die nachgewiesenermaßen jeweils ursprünglichsten (primitivsten) Repräsentanten einer Organismen-Gruppe in Untersuchungen wiederholt als "unerwartet" komplex heraus stellen. Viele solcher Beispiele sind inzwischen verfügbar, aber am eindrucksvollsten sind unter diesen immer noch die Eukaryoten.
Eukaryoten sind alle Organismen, deren Zellen einen Zellkern aufweisen, im Gegensatz zu den ursprünglicheren Prokaryoten, die keinen Zellkern aufweisen (siehe: Wikipedia). (Zu den Eukaryoten zählen auch die drei Arten, die auf Seiten der hier herangezogenen philosophischen Entwurfs genannt worden waren: Pandorina, Volvox und Amphioxus, also das Lanzettfischchen.) Damit zusammenhängend will Conway Morris als zweiten Punkt das Thema Inhärenz ("inherency") herausarbeiten. Er schreibt hierüber (1, S. 135):
Zum zweiten gibt es das Phänomen der evolutionären Inhärenz, die Beobachtung, daß vieles von dem, was erforderlich ist für das Entstehen einer komplexen Form schon in einem wesentlich früheren Stadium evolviert ist. Ein gutes Beispiel hierfür ist das Protein Kollagen, lebenswichtig als ein Strukturmolekül in allen Vielzellern. Aber seine Ursprünge liegen nicht nur tiefer in der eukaryotischen Geschichte, sondern in dieser waren seine Funktionen nachgewiesenermaßen auch noch ganz andere. Inhärenz weist darauf hin, daß viel von der späteren Komplexität im Entstehen begriffen ist - geradezu Homunculus-ähnlich - viel tiefer im Artenstammbaum als es allgemein erwartet worden ist.
Das Thema Inhärenz hat er schon zehn Jahre zuvor, 2003, in der Einleitung seines damals erschienenen, bahnbrechenden Buches über die evolutionären Konvergenzen angesprochen (4, S. 5-8). Der hier behandelte Aufsatz von 2013 ist sowieso eigentlich vor allem eine gedankliche Fortsetzung seines Buches von 2003. Das Thema Inhärenz hat Conway Morris dann auch in einem neuen Buch im Jahr 2015 "The Runes of Evolution" (5) behandelt. Als dritten Punkt will Conway Morris im Jahr 2013 herausarbeiten, daß wachsende biologische Komplexität oft auch dann vorliegt, wenn Organismen im Spiel sind, die hierbei in der Regel als "Vereinfachungen" oder "Regressionen" unbeachtet bleiben. Er nennt als Beispiel unter anderem die parasitischen, wurmartigen Rhombozoen (Rautentiere) und Wimperntierchen (Ciliaten), die im Nierentrakt von Kopffüsslern (Cephalopoden) leben.
Da man von diesen als Nichtbiologe in der Regel noch nie etwas gehört haben wird, auch nicht unbedingt als Biologe, sei über diese hier zunächst Wikipedia zitiert (Wiki):
Die Tiere leben in den Exkretionsorganen von Kopffüßern. Sie werden meist als deren Parasiten betrachtet. Da sie durch Ansäuerung ihres Milieus die Ammoniak-Exkretion ihres Wirtes fördern, kann man sie auch als Endosymbionten auffassen. Die Infektionsrate von Cephalopoden mit Rhombozoen ist generell sehr hoch, in vielen Populationen sind beinahe alle Kopffüßer betroffen. In Jungtieren überwiegen dabei in der Regel Nematogene, in älteren Tieren Rhombogene, ohne dass genau bekannt wäre, warum. Die Rhombozoa treten meist nur in einer oder in wenigen nahe verwandten Cephalopoden-Arten auf, sie sind also wirtsspezifisch. Eine einzelne Kopffüßer-Art kann dabei allerdings von mehreren Rhombozoen-Arten infiziert werden. So sind z.B. an der kalifornischen Küste 18 Arten von Rhombozoa bekannt, die acht Kopffüßer-Arten befallen.
Dies hier nur als kurze eingefügte Erläuterung.
Conway Morris nennt diese nun eigentlich nur im Vorübergehen in den folgenden Ausführungen (1, S. 136):
Viele solcher Beispiele wie die Rhombozoen (Rautentiere)/Wimperntierchen-Verbindung mit den Nierenorganen der Kopffüssler (Cephalopoden) oder - als ein alternatives Beispiel - die Bewohner eines Insekten-Mikrobioms - sind in intimer Weise symbiotisch und es kann argumentiert werden, daß sie ebenso komplex sind wie manche bekannteren Systeme.
Es muß später noch einmal genauer hingeschaut werden, warum Conway Morris dieser Gedanke so wichtig ist. Jedenfalls als vierten und letzten Punkt geht es ihm um folgendes (1, S. 136):
Schließlich präsentiere ich Belege dafür, daß biologische Systeme den Grenzen von Komplexität nahe gekommen sind oder sie in einigen Fällen schon erreicht haben. Dies ist belegbar durch Beispiele so unterschiedlich wie die Extremophilen, das Nerven- und Sinnessystem, Enzyme wie Rubisco, komplexe Symbiosen und funktionale Komplexe wie Zähne oder die Tagmatisierung der Gliederfüßler (Arthropoden).
All diese Beispiele werden im folgenden noch genauer erläutert. Hier sei zum Verständnis des Begriffes Tagmatisierung zunächst nur auf Wikipedia verwiesen (s. Tagmata). Conway Morris schreibt dann weiter:
Das Paradoxon ist, daß obwohl der Evolution die Dinge ausgegangen sind, die sie tun kann, im Falle des Wissens und der Weisheit das genaue Gegenteil der Fall zu sein scheint. Hier haben hinsichtlich der letzteren das Ende der Komplexität noch nicht erreicht.
Conway Morris möchte seinen Aufsatz zunächst lediglich als eine "Tour d'horizon" verstanden wissen hinsichtlich der gegebenen Thematik, also als einen ersten, sichtenden Überblick, aber als einen solchen (1, S. 136),
dessen zentraler Tenor es paradoxerweise ist, nach den Grenzen dessen zu suchen, was möglich ist.
Einige Seiten später benennt Conway Morris seine vier Themen noch einmal kürzer formuliert folgendermaßen (1, S. 141):
a) Wie einfach sind die Ausgangspunkte?, b) Was liegt dem Prozeß inhärent zugrunde?, c) Ist Komplexität irreversibel? und d) Sind äußerste Grenzen für biologische Komplexität vorhanden? In all diesen Fällen schlage ich vor, daß die Antworten nicht jene sind, an die die heutigen Neodarwinisten denken. (...) Ich will eine Reihe empirischer Beobachtungen vortragen, die nahelegen, daß die Möglichkeiten von Komplexität begrenzt sind mit einer paradoxen Ausnahme: uns selbst.
Ist der Hyperraum des biologisch Möglichen ausgeschöpft?
Conway Morris führt dann in Auseinandersetzung mit dem Komplexitätsforscher Chris Lucas aus, daß die Komplexität evolvierender Systeme keineswegs - wie Chris Lucas meint - Vorhersagbarkeit vermissen lasse. Conway Morris bezieht sich dafür natürlich auf die Grundaussage seines Buches aus dem Jahr 2003 und schreibt in Übereinstimmung mit dieser (1, S. 137):
An dieser Stelle ist es wertvoll festzustellen, daß ein gewisser Führer in Richtung Vorhersagbarkeit vorliegt in der Allgegenwärtigkeit evolutionärer Konvergenz. Dies ist ein wichtiger Umstand angesichts der Luca'schen Beobachtung, daß "in jedem komplexen System viele Kombinationen der Teile möglich sind, so viele, daß wir zeigen können, daß die meisten Kombinationen während der gesamten Geschichte des Universums noch kein einziges mal aufgetreten sind". Dieser Gedanke legt nahe, daß zwar im Prinzip der kombinatorische Raum aller biologischen Möglichkeiten immens ist, die Wirklichkeit, die durch evolutionäre Konvergenz aufgedeckt wird, aber jene ist, daß einige, wenn nicht die meisten Kombinationen schon ausprobiert worden sind und sich als solche herausgestellt haben, die nicht geglückt sind (Original: "not found wanting").
Für die Formulierung "not found wanting" kann man auch zahlreiche andere Übersetzungen ins Deutsche wählen, auch solche, die dem Grundgedanken der philosophischen Deutung näher kommen, auf die schon oben Bezug genommen worden war, etwa: "... und sich als solche herausgestellt haben, die nicht vermißt werden". Dieser Umstand mag aufzeigen, daß wir es - typisch für die Texte von Conway Morris - einerseits mit einer durchgehend naturwissenschaftlichen Argumentation zu tun haben, seine Texte aber gleichzeitig als philosophische gelesen werden können. (Auf diesen Umstand wiesen wir schon in unserer Amazon-Rezension zu seinem Buch von 2003 hin, die damals manche Zustimmung gefunden hat.) Conway Morris nimmt also den argumentativen Faden seines Buches aus dem Jahr 2003 wieder auf, der gegen das neodarwinische Paradigma gerichtet war, repräsentiert einstmals durch ebenfalls ans Philosophische streifende Bücher wie Jaques Monod's "Zufall und Notwendigkeit" (1970), später durch Steven Jay Gould's "Zufall Mensch" (1989) (10), und zuletzt auch, wie Conway Morris ausführt, durch "Elsasser's unendliche Zahlen" (1, S. 138),
die voraussetzen, daß jede mögliche Kombination mit gleicher Wahrscheinlichkeit ins Dasein tritt, überleben und sich vermehren kann.
Conway Morris schreibt zu diesen letzteren:
Aber dies ist natürlich extrem unwahrscheinlich. Sei es mit Bezug auf lebensfreundliche Aminosäuren (sowie ihrer Chiralität), sei es mit Bezug auf den genetischen Code oder in Hinsicht auf Konvergenzen auf dem Gebiet der Enzyme - und das ist erst der Anfang der Geschichte - kann argumentiert werden, daß das Substrat der Möglichkeiten, die vorherbestimmt sind durch die physikochemischen Bedingungen des Universums, sicherstellen, daß praktisch die Gesamtheit des biologischen Möglichkeitenraumes ("biological hyperspace") unbesucht bleiben wird, nicht weil es dafür bisher zu wenig Zeitraum gegeben hat, sondern weil die hypothetischen Alternativen niemals wirklich funktionieren werden.
Mit diesen Fragen hatte sich Conway Morris schon in den ersten grundlegenden Kapiteln seines Buches von 2003 beschäftigt (4). Diese wurden leider in der vorliegenden deutschen Übersetzung seines Buches nicht mit aufgenommen, worauf wir ebenfalls schon in unserer Amazon-Rezension hinwiesen, und was zeigte, daß der Verlag und (oder) der Übersetzer nicht ausrechend Sensibilität hatten für die sehr grundlegende Bedeutung dieser Kapitel für das Gesamtargument des damaligen Buches von Conway Morris.
Exkurs: ... Und warum ist es gerade dieser Feierabend-Blog, der das Thema im deutschsprachigen Raum als erster behandelt?
Bei dieser Gelegenheit fragt man sich übrigens auch, warum wir mit diesem Blogbeitrag die ersten sind, die den hier behandelten Aufsatz und Grundgedanken von Conway Morris aus den Jahren 2013 und 2015 erörtern und ihn dazu zunächst einmal nur in weiten Teilen ins Deutsche übersetzen müssen. Nämlich um den anspruchsvoll zu lesenden englischen Originaltext zu verstehen, und um damit seine Gedanken überhaupt bekannt zu machen und um schließlich in einem letzten Schritt auch eine erste Bewertung und Einordnung derselben vorzunehmen. Was letzteres sowohl naturwissenschaftlich wie natürlich auch philosophisch geschehen kann, bzw. in Bezugnahme zu schon vorliegenden Aussagen der Philosophie.
Sucht man im deutschsprachigen Internet der letzten drei Jahre nach dem Namen Simon Conway Morris, findet man wirklich den einen oder anderen sehr anregenden Aufsatz allgemeinerer Art. Aber in keinem werden die in dem vorliegenden Blogbeitrag enthaltenen Gedanken erörtert. Ist dieser Umstand nicht schade? Spannendste und anspruchsvollste, herausfordernde Erörterungen über Grundfragen der Gesamtdeutung unseres Wissens von der Welt werden - in diesem Fall seit drei Jahren - gar nicht aufgenommen, gar nicht geführt. (Dabei kann sich doch schon einmal die Frage stellen: Sind Erörterungen über Inhalte solcher Aufsätze nicht würdiger der Kultur unseres Abendlandes als Erörterungen sagen wir ... über die Kriminalitätsrate unter Flüchtlingen ....?) - Aber es ist ja nicht das erste mal, daß dieser Feierabend-Blog im deutschsprachigen Raum früher als andere Wissenschaftsautoren Themen aufgreift, die später dann auch noch viele andere Autoren im deutschsprachigen Raum häufiger behandeln werden. So ging es uns ja auch schon - zum Beispiel - mit dem Conway Morris-Buch von 2003.
Unter Berücksichtigung evolutionärer philosophischer Entwürfe des frühen 20. Jahrhunderts, auf die wir schon Bezug genommen hatten, bekommt man vermutlich mitunter noch einen schärferen, präzisionsgenaueren Blick auf neuere Entwicklungen in der Naturwissenschaft als würde man die Aussagen solcher philosophischer Entwürfe nicht mit in Rechnung stellen bei der Beurteilung der geistigen Entwicklungen unserer Zeit. So jedenfalls möchten wir meinen (- Exkurs-Ende).
Simon Conway Morris jedenfalls schreibt weiter (1, S. 138):
Wenn diese Annahme - daß hypothetische biologische Alternativen nicht funktionieren - sich bestätigen sollte, dann ist das Leben nicht nur extrem fein austariert ("finely poised") zwischen nicht zu verwirklichenden Möglichkeiten, die entweder quasi-kristallin oder chaotisch sind (siehe Macklem, 2008), sondern die Evolution ist gezwungen, entlang der Silberminen der Lebensfähigkeit zu navigieren, welche eine Handvoll Routen definieren über eine ansonsten wüste und tote Landschaft.
Gemeint ist die Landschaft des Hyperraumes der zumindest prinzipiell denkbaren Möglichkeiten, biologische Strukturen zu schaffen:
Wenn, wie ich vermute, das Leben ebenso fein abgestimmt ist ("fine-tuned"), wie der Rest des Universums, dann können die Grenzen für Komplexität besser eingeschätzt werden.
Hier deutet sich an, worauf schon anfangs hingewiesen worden ist. Conway Morris arbeitet hin auf eine Erweiterung des astrophysikalischen Anthropischen Prinzips auf die biologische Evolution. In früheren Jahren hat Conway Morris in internationalen Projektgruppen sich sehr intensiv mit der Frage beschäftigt, ob es im Universum Alternativen zu der Form komplexen Lebens auf unserer Erde gegen kann und wenn ja, in welcher Form. Siehe zu dieser Fragestellung allgemein Wikipedia (Ausserirdisches Leben, Astrobiologie). Auch aus diesem Blickwinkel heraus wurden seine Gedanken für die vorliegende Thematik geschärft.
Inhärenz - Den "einfachen" evolutionären Anfangsbedingungen und Ausgangspunkten wohnt überraschenderweise die Möglichkeit zu großer Komplexität "inne"
Folgen wir weiter den Ausführungen von Conway Morris. Schwämme bestehen, so führt er aus, aus 15 unterschiedlichen Zelltypen, Menschen aus ungefähr 215 unterschiedlichen Zelltypen (1, S. 139). Conway Morris fragt sich jedoch, ob dieser offensichtliche Unterschied tatsächlich - wie von anderen vorgeschlagen - als ein guter Maßstab für wachsende biologische Komplexität erachtet werden sollte. Er tut dies mithilfe des folgenden Gedankenganges (1, S. 139/140):
Zunächst müssen wir vorsichtigt darin sein, die Komplexität von einigen "primitiven" Organismen zu unterschätzen. In dieser Hinsicht gibt uns der Keulenpolyp (Clava multicornis) eine nützliche Lehre. Denn er zeigt ein "überraschend" komplexes Verhalten. Dieser Umstand wird untermauert durch eine auffallende Polarisation seines Nervensystems und eine Anordnung seiner Sinneszellen und ebenso durch ein "unerwartetes" Ausmaß seiner neuralen Organisation und zellulären Vielfalt. (...) Wenn es um morphologisch so "einfache" Gruppen wie die Schwämme und die Nesseltiere (Cnidaria) geht, dann steht die relativ geringe Anzahl von Zelltypen in einem krassen Gegensatz zu dem Ausmaß ihrer genomischen Komplexität. (...) In Hinsicht auf die Nesseltiere oder zumindest ihrem Modellorganismus, nämlich der Seeanemone Nematostealla, gilt: "viel der genomischen Komplexität hinsichtlich des Geninhalts - und der Genstruktur ist schon in den gemeinsamen Vorfahren aller Eumetazoa vorhanden". Dies schließt das Nervensystem ein, wichtige Komponenten, die nicht nur bei den Schwämmen evolviert sind, sondern sogar weit früher unter den Prä-Metazoen. (...) Das heißt, der molekularen Beschaffenheit der Schwämme und ähnlicher Gruppen von Organismen sind die Potentiale, bzw. Möglichkeiten für komplexere Lebenssysteme innewohnend (inhärent). Aus dieser Sicht ist das Auftreten jener komplexen Nervensysteme, das sich schon in den Planula (einer Larvenform der Nesseltiere) angekündigt hat, sehr wahrscheinlich, wenn nicht sogar unvermeidlich.
Sprich, frühe Ausgangsbedingungen in der Evolution des Organischen bedeuten schon für sich eine große Wahrscheinlichkeit, bzw. Unvermeidlichkeit dahingehend, daß aus ihnen, wenn genügend Zeit zur Verfügung steht, bestimmte andere, komplexere Strukturen evolvieren können. Conway Morris schreibt dann weiter im Hinblick darauf, daß das menschliche Gehirn die bislang komplexeste, bekannte Struktur im Weltall ist (1, S. 140, Hervorhebung nicht im Original):
Es ist immer noch wertvoll daran zu erinnern, daß der spezifische Weg zu Komplexität vor nicht weniger als 1,5 Milliarden Jahren begann. Warum schon damals? Weil damals der Zeitpunkt war, an dem das Sichtbarwerden jener genetischen Komponenten der Pilze und Pflanzen, die wir später im Nervensystem von Tieren finden (Mineta et. al., 2003), als erster Zeitpunkt gewählt werden kann, an dem ein zukünftiges Nervensystem wahrscheinlich wird, wenn nicht sogar sehr wahrscheinlich. Man bemerke ebenfalls, daß Mineta et. al. nicht einfach identifizieren einen sehr allgemeinen Satz von Proteinen in Pilzen und Pflanzen, sondern einen, der in der Folge eine spezifische Verwendung findet in verschiedenen nervlichen Kategorien (wie als Neurotransmitter, Nervendifferenzierung etc.). Es ist unwahrscheinlich, daß Nervensysteme selbst sehr viel älter als 580 Millionen Jahre sind (Pecoits et. al., 2012), Gehirne (oder etwas ihnen nahe Kommendes) folgten nur wenig später (und sicher um 530 Millionen Jahre vor heute). Nachfolgend erfolgte bei den Wirbeltieren ein zumindest vielfaches Anwachsen der Gehirngröße. Aber diese stürmische Encephalisation (anteilige evolutionäre Gewichtzunahme des Gehirns abgeglichen mit dem Körpergewicht) wurde, wie es scheint, erst in effektiver Weise initiiert ungefähr in den letzten 20 Millionen Jahren (derzeitige Daten weisen auf etwa 18 Millionen Jahre für Delphine, etwa 7 Millionen Jahre für Hominiden und vielleicht eine ähnliche Zeit für die Neukaledonienkrähen. (...) Diese Zeiträume erinnern uns daran, daß von einer Perspektive - jener von Nervensystemen - Komplexität lange auf sich hat warten lassen. Aber als das Wachstum an Komplexität Geschwindigkeit aufnahm, geschah dies vielleicht exponentiell und noch eindrucksvoller: mit einer gewissen Synchronizität.
Man kann natürlich unzählige andere Beispiele aus der Biologie wählen und es wäre ein Fehler anzunehmen, daß die Dinge voranschreiten entsprechend eines irgendwie ausgemachten Zeitplanes. Die Photosynthese zum Beispiel datiert zurück ziemlich sicher auf mindestens 3,5 Milliarden Jahre und es ist (...) offensichtlich nicht so, daß der Mechanismus der Photosynthese seit dem Archaikum besonders verbessert worden wäre.
Der Gedanke, daß es - ganz offensichtlich - eine Synchronizität in der Evolution verschiedener Organismengruppen gibt, fehlte uns noch in dem Buch aus dem Jahr 2003. Dabei ist es doch zum Beispiel offensichtlich, daß die Bedecktsamer (Angiospermen) etwa synchron evolvierten mit den Säugetieren und daß beide male - wie schon der Name sagt - eine Intensivierung der Nachkommenfürsorge einen Kernbereich des Evolutionsgeschehens überhaupt darstellte (Schutz des Samens durch "Bedeckung", Fürsorge für die Nachkommen durch Schwangerschaften und "Säugen"). (Wie ja Conway Morris scheinbar bis heute noch nicht den Gedanken geäußert hat, daß Zuwachs an Komplexität in der Evolution nur allzu oft zentral etwas mit dem Bereich Nachkommen-Fürsorge zu tun hat. Aber das nur am Rande.)
Bis hier hin haben wir die einleitenden Gedanken von Conway Morris referiert (1, S. 135-142). Ab Seite 142 geht er seine vier genannten Punkte nacheinander durch unter folgenden Zwischenüberschriften: 1. Wie einfach sind die Ausgangspunkte?, 2. Evolutionäre Inhärenz, 3. Komplexitätszunahme in Umkehr ("reversing complexity"), 4. Gibt es für biologische Komplexität Grenzen? - - - Schauen wir uns diese Abschnitte nun genauer an.
Zu 1.: Wie einfach sind die Ausgangspunkte?
.... / das ist künftig hier noch zu ergänzen! /
Zu 2.: Evolutionäre Inhärenz
Conway Morris schreibt (1, S. 145):
Es ist ein Gemeinplatz, daß die Evolution keine Voraussicht besitzt. Das stimmt, übersieht aber die Tatsache, daß wenn eine Struktur einmal entstanden ist, in vielen Fällen dann auch dahingehend argumentiert werden kann, daß dann eine bestimmte Stufe von Komplexität sehr wahrscheinlich, wenn nicht unvermeidlich geworden ist. Derelle et. al. (2007) schreiben über die Homeodomain-Proteine und sie argumentieren, daß ihr frühes Auftreten indiziert, "daß die Eukaryoten schon als Ganzes"
also als gesamte Gruppe
"an Vielzelligkeit angepaßt sind" (S. 217). Und ähnliches kann geschlussfolgert werden für die SNARE's. In gewisser Hinsicht ist diese molekulare Inhärenz keineswegs die Ausnahme, nämlich soweit diese als mehr oder weniger synonym erachtet werden kann zu dem evolutionären Prinzip der Kooption. Hierbei wird eine Komponente, die in einem Kontext evolviert ist, in einem gänzlich nichtverwandten Kontext verwendet (oder - wenn einem ein anderes Wort lieber ist: gehijackt). Die Kristalle der Augen sind das vielleicht bekannteste Beispiel nicht nur um ihrer konvergenten Verwendung, sondern weil die Reihe der Proteine, die in unzähligen unterschiedlichen Tieraugen kooptiert wurden, in Mikroben ursprünglich völlig andere Funktionen hatten, wobei sie oft mit Streßkontrolle zu tun hatten. Aber Kooption und Inhärenz sind nicht bloß unterschiedliche Seiten derselben Medaille. Man erwähne das Wort "Kooption" und die meisten evolutionären Biologen werden klug mit ihren Köpfen nicken. Doch seine Allgegenwärtigkeit wird unterschätzt.
Man nehme doch zum Beispiel den kuriosen Fall des Kollagens, ohne den Tiere angesichts seiner zentralen Rolle als Strukturprotein nicht existieren können. Wenn auch im Vorübergehen die eindrucksvollen Beispiele seiner konvergenten Evolution in Viren (Li et al., 2004), Bakterien (Waller et al., 2005) und Pilzen (Wang & St. Leger, 2006), erwähnt seien, möchte man doch erwarten, daß Kollagen bei der Entstehung der Tiere evolviert ist. Für einige Proteine wie jene der Hox-Familie gilt dies auch offensichtlich. Nicht aber für das Kollagen. Denn es kommt in Choanoflagellaten vor und diese sind eine Schwesterruppe der Tiere. Der spezifische Choanoflagellat allerdings, das Taxon Monosiga, ist einzellig und sein Kollagen spielt ganz klar keine strukturelle Rolle (King et al., 2008). Was also macht es? Es gibt einen Hinweis, daß es ursprünglich benutzt wurde im Signalaustausch von Zellen (Heino, 2007). Aber Kooption für ein eine solche strukturelle Rolle heißt, daß es keineswegs lächerlich ist zu sagen, daß den Choanoflagellaten unsere Achillessehne inhärent war. Und hier liegt der Unterschied zwischen Kooption und Inhärenz. Und zwar weil das letztere das erstere subsumiert aber ebenso die Implikation von hoher Wahrscheinlichkeit oder Unvermeidlichkeit hat. In anderen Worten, komplexe Formen können nicht anders als entstehen nicht nur weil es eine "Landschaft" gibt, über die die Evolution gezwungen ist zu navigieren, sondern weil viele der Teilkomponenten schon evolviert sind.
Mit dem Begriff "Inhärenz" will Conway Morris jedoch ausdrücklich nicht auf die sogenannten Hox-Gene hinaus, also auf sehr grundlegende Entwicklungs-Gene, die heute in der Forschung sehr in Mode sind, und die mit sogenannten "tiefen Homologien" in Verbindung gebracht werden, wobei ihnen eine sehr grundlegende Bedeutung zugesprochen wird (etwa durch den Forscher Gehring). Was Conway Morris hierzu als Einwand formuliert, schwante auch dem Schreiber dieser Zeilen schon sehr dunkel, als er einstens mit diesem Thema im Biologiestudium konfrontiert war (1, S. 147):
Es gibt selten (oder gar nicht) eine Eins-zu-Eins-Beziehung zwischen einem Entwicklungsgen und einer Struktur.
Das belegt er auch mit entsprechenden Beispielen. Für ihn ist dagegen (1, S. 148):
Inhärenz viel ehrgeiziger darin zu untersuchen, ob Evolution nicht von bestimmten Organisationsprinzipien abhängt,
also solchen, die grundlegender sind, als die Verschaltung eines bestimmten Entwicklungsgens für angeblich nur eine einzige Funktion (etwa Augen) über weite Bereiche des Artenstammbaums hinweg. Conway Morris führt hingegen Beispiele an, nach denen diese Annahme noch nicht einmal für das oft genannte Hox-Gen für Augen gilt, das gerne auch einmal ganz andere Funktionen in der Entwicklung steuern kann. - Ergänzung November 2017: Nachdem der Autor dieser Zeilen diesen Gedanken der Inhärenz länger auf sich hat wirken lassen, glaubt er ihn auch an einem noch grundlegenderen Beispiel der Evolution erläutern zu können, nämlich an der Entstehung des Lebens selbst (19).
Zu 3.: Komplexitätszunahme in Umkehr ("reversing complexity")
/ .... ist künftig hier noch zu ergänzen /
Zu 4.: Gibt es Grenzen für biologische Komplexität?
Conway Morris fragt (1, S. 150):
Können wir die Meinung vertreten, daß das Leben die Grenzen des biologischen Universums - wie auch immer definiert - schon erreicht hat? Die Schlußfolgerung wäre, daß dann der Raum zur weiteren Erforschung von Komplexität recht deutlich eingeschränkt wäre. Weil uns eine Beschreibung des biologischen Hyperraumes fehlt, ist es sehr schwierig, mehr als einige Hinweise zu geben, die auf sehr unterschiedliche Beispiele Bezug nehmen. Da aber zumindest einige dieser Beispiele - wie die Einschränkungen des Nervensystems - von sehr allgemeinen Faktoren abhängen - wie der Allometrie und des Energieverbrauchs, haben wir Vertrauen, daß unsere Schlußfolgerungen nicht völlig flügellahm daher kommen aufgrund von Umständen, die nur wenig Allgemeinheit für sich beanspruchen können.
Schon die Tatsache, daß viele Lösungen für ein bestimmtes Problem des Lebens (etwa in extremen Temperaturen in heißen Quellen zu leben) mehrmals konvergent erreicht worden sind, ist für Conway Morris dann ein erster Hinweis darauf, daß es für solche Probleme gar nicht so viele andere Lösungen gibt, daß also hierfür die Grenzen des biologisch Möglichen - wahrscheinlich - schon ausgereizt sind (1, S. 151f):
Diese Kombination aus Konvergenz und molekularer Feinabstimmung (fine-tuning) legt nahe, daß Extremophile ein brauchbares Gebiet sind, um Komplexität zu untersuchen. (...) Bakterien werden niemals in 150 Grad leben oder in einer Umgebung mit einer Wasseraktivität weniger als 0,6.
Zur Thematik Wasseraktivität siehe einmal erneut Wikipedia (s. "Aw-Wert"). Auf dem englischsprachigen Wikipedia-Artikel "Water activity" gibt es auch eine entsprechende Liste, unter welchen Bedingungen Mikroorganismen diesbezüglich leben können. Conway Morris weiter:
Vielleicht können sie es "draußen" (im Universum) oder in einigen noch nicht erforschten Regionen unseres Planeten aber wenn es sich nach und nach bestätigen sollte, dass die umschriebenen Rahmenbedingungen ("envelope") nicht zu durchbrechen sind, dann sagt uns diese Grenze etwas über die allgemeinen Begrenzungen dessen, was Leben kann und was es - noch wichtiger - nicht kann.
Weiter sagt er (1, S. 152):
Die Tatsachen legen nahe, daß - mit einer wesentlichen Ausnahme - es nicht nur eine Grenze für biologische Komplexität gibt, sondern daß die Evolution diese - analog zu den Extremophilen - auch schon so gut wie erreicht hat. (...) Meine Absicht ist es hier, ein Forschungsprogramm vorzuschlagen, daß diesbezüglich über den gegenwärtigen neodarwinischen Rahmen hinausschaut.
Als ein wesentliches Beispiel bringt er dann das Protein RuBisCO. Über dieses kann man sich wieder leicht auf Wikipedia kundig machen (Wiki). Auf dem englischsprachigen heißt es (engl.):
The inability of the enzyme to prevent the reaction with oxygen greatly reduces the photosynthetic capacity of many plants.
In der Wissenschaft ist man sich einig, daß das am häufigsten vorkommende Protein auf unserer Erde (weil es sich in allen Blättern findet für die Photosynthese) zugleich eines der am ineffektivsten arbeitenden Proteine ist. Und dennoch konnte bislang die Natur - trotz aller Bemühungen seit 3,5 Milliarden Jahren - auf diesem Gebiet nicht "verbessert" werden. Ein wesentliches Argument für Conway Morris. Schließlich kommt er zu seinem abschließenden Argument (1, S. 155):
Von allen Grenzen der Komplexität ist aber die vielleicht interessanteste jene, die die Evolution des Nervensystems betrifft. Es ist gut bekannt, daß Nervensysteme in Hinsicht auf den Energieumsatz lähmend teuer sind: die Retina der Schmeißfliege nimmt für sich allein außergewöhnliche 8 Prozent des totalen Energieumsatzes des Insekts in Anspruch (Laughlin et. al., 1998). Ebenso gibt es eine eindrucksvolle Literatur über die vielfältigen Wege, auf denen Nervensysteme mit größter Effektivität genutzt werden können bei geringstem Verbrauch von Energie. Auf ihren unterschiedlichen Wegen macht diese deutlich, daß wie komplex Nervensysteme auch immer werden sollten, es abschließende Grenzen dessen gibt, was schlussendlich möglich ist. Das heißt nicht, daß es eine einzige Lösung gibt. Und in diesem Kontext mag man feststellen, daß obwohl Enzephalisation normalerweise verbunden ist mit Gewebe-Wärmebildung, dies offensichtlich für den Oktopus (die Krake) nicht gilt. Wenn wir jedoch die Evolution des Säugetier-Gehirns betrachten, dann scheint es - wie Hofmann (2001) gezeigt hat - endgültige Grenzen zu geben für alle weitere Größenzunahme und damit implizit auch für seine Komplexität. Zum Teil drehen sich diese Grenzen rund um die Fähigkeit eines Gehirns in Bezug darauf, daß es sich, wenn es seine Größe ständig erweitert, sich weiterhin um effektive Integration bemühen muß (...). Von gleicher Bedeutung ist, daß die unterschiedlichen Allometrien der grauen und weißen Substanz eine absolute Grenze für die Gehirngröße mit sich zu bringen scheinen, so daß es nicht mehr als um das Dreifache in seiner Größe zunehmen kann (Hofmann, 2001).
Das heißt, hier erreichen wir eine höchste Stufe der Komplexität, zumindest auf biologischer Ebene. Wir können nicht mit 65 Kilometer pro Stunde laufen (obwohl ein Spurt mit zirka 44 Kilometer pro Stunde keinesfalls vernachlässigbar ist)
(siehe dazu Wikipedia),
noch fliegen (aber ein Gin Tonic in 11,5 Kilometer Höhe hat seine Vorzüge), noch den Pazifik schwimmend durchqueren (aber der Freitauch-Rekord über eine Strecke von 243 Meter verdient gewiß eine Ehrenbezeugung). Aber wir können jeden anderen Organismus, der jemals evolviert ist, im Denken übertrumpfen. Doch haben wir ebenfalls die Grenzen neuraler Komplexität erreicht und die Fähigkeit zu fragen - ganz abgesehen davon zu verstehen - die nächste Reihe von Fragen? Ich glaube das nicht, aber das ist, wie man so sagt, eine völlig andere Geschichte.
So die raunenden letzten Worte von Conway Morris in diesem Aufsatz. Es wird deutlich, daß es einige Hinweise gibt, daß die Evolution zu Ende ist. Aber zugleich wird deutlich, daß vom naturwissenschaftlichen Standpunkt aus noch keineswegs mit letzter Sicherheit gesagt werden kann, daß es tatsächlich so ist.
Ein erstes Zwischenresümee
Der von diesem Blog hoch verehrte britische Paläontologe Simon Conway Morris, der in seinem Buch von 2003 die These vertrat "Unvermeidlich Menschen in einem einsamen Universum", hat 2013 nachgelegt und einen neuen Gedanken veröffentlicht, nach dem der Mensch und andere Produkte der Evolution nicht nur unvermeidlich aus der Evolution hervorgehen, wenn sie hier auf der Erde oder anderwärts einmal angefangen hat, sondern nach dem das Leben auch gar keine größere Komplexität erreichen kann, als es hier auf der Erde schon erreicht hat. Dieser Gedanke wird 2015 im "Journal of Theoretical Biology" folgendermaßen zusammen gefaßt (3):
Er argumentiert, daß es Grenzen für die Komplexität des Lebens gibt und daß diese Grenzen schon erreicht worden sind. Er nimmt an, daß die Vorherrschaft von konvergenter Evolution indiziert, daß es ein endliches Set von Strategien gibt, die Organismen nutzen können. Wenn das Tonband des Lebens erneut abgespielt würde, würden dieselben Ergebnisse erreicht, weil die Selbstorganisation und die sich gegenseitig ausschließenden Begrenzungen in der Entwicklung es für Organismen erforderlich machen, jenen begrenzten Raum des Möglichkeiten-Raumes zu besuchen, der ihnen erreichbar ist. In seinem zweiten Argument fragt sich Conway Morris, warum einige Strukturen, die offensichtlich schlecht funktionieren, über Millionen von Jahren unverändert geblieben sind. Warum wurde Rubisco nicht über die Jahre effizienter, ein Prozeß, der seine Komplexität erhöht haben würde? In Conway Morris Sichtweise ist Evolution nicht fähig, diesen Schritt zu tun, weil das System auf seinem Höhepunkt von Komplexität angekommen ist. Diese herausfordernde Annahme ist bis heute noch nicht ausreichend überprüft worden.
Original: He argues that there are limits to the complexity of life and that these limits have already been touched. He asserts that the prevalence of convergent evolution indicates that there is a finite set of strategies that organisms can use. If the tape of life was played again, the same results would ensue, because self-organization and the conflicting constraints in development bind organisms to visit a limited area of the possibility space otherwise available. In his second argument, Morris wonders why some structures which clearly perform poorly have remained almost unchanged for millions of years. Why has not Rubisco become more efficient over the years, a process that would likely increase its complexity? In Morris׳s view, evolution is unable to take that step, because the system has arrived at its peak complexity. This daring suggestion has not yet been properly tackled.
Auf Seiten der Philosophie kommt eine Deutung der Entwicklungsgeschichte des Lebens auf der Erde zu der intuitiv gewonnenen und durch eine einheitliche philosophische Argumentation abgestützten Erkenntnis, daß mit der Entstehung bewußten Lebens auf der Erde, also mit der Entstehung des Menschen die Kosmologie und die Evolution hier auf der Erde ihr Ziel erreicht haben und darum seither aufgehört haben, grundlegend Neues zu schaffen (6, 7). Das Weltall entstand und im Weltall entstand nach und nach größere Komplexität, weil das Ziel der Kosmologie und Evolution die Hervorbringung bewußten Lebens war. Da nur dieses Ziel erreicht werden sollte, konnte nach Erreichen dieses Zieles die Evolution zum Stillstand kommen, so die Aussage der Philosophie (6, 7).
Das war zu den Zeiten als diese intuitive, in ein philosophisches Gedankengebäude eingefügte Erkenntnis niederschrieben worden ist und noch bis vor wenigen Jahren eine - aus naturwissenschaftlicher Sicht - unglaublich kühne, waghalsige, wenn nicht ganz und gar "unseriöse" Aussage. Eine typisch "vitalistische" oder "kreationistische". Welche naturwissenschaftlichen Hinweise sollte man bis dato einer solchen philosophischen Aussage gegenüber stellen wie (7):
"Da stunden stille die Wege des Werdens auf Erden
(...)
Nicht wurde mehr Art und Gestaltung,"
bzw. der philosophischen Aussage:
"…denn sieh', es steht still das Werden der Arten!"
nämlich mit dem Erreichen bewußten Lebens auf dieser Erde? Welche naturwissenschaftlichen Hinweise sollte man einer solchen philosophischen Aussage gegenüber stellen wie (7):
Und wir begreifen es wohl, wie unmöglich sich eine Aufwärtsentwicklung der Tiere und Pflanzen auf Erden nach der Menschwerdung mit Gottes Erhabenheit über Raum, Zeit und Kausalität vereinen läßt! (...) Nein, es bedeutet nichts anderes als ein ohnmächtiges Haftenbleiben in dem Vernunfterkennen und ein Fernsein vom Wesen Gottes, wenn wir nicht selbstverständlich erwarten, daß nach der Menschwerdung (...) aus all der nichtbewußten Tierheit, auch nicht aus den höchstentwickelten unterbewußten Tieren, eine höhere Art wurde.
Oder (20, S. 71):
In dem unermeßlichen Kosmos still kreisender Urwelten ist nach dem erreichten Schöpfungziele: dem Werden des Menschen, kein Wille zum Wandel der geschaffenen Formen der Lebewesen am Werke. Nach unerbittlichen Gesetzen verweilt die gewordene Erscheinung in der einmal geschaffenen Gestaltung. Ein Aufflammen neuen göttlichen Wollens, wie es die Schöpfungstufen boten, zeigt das vollendete Weltall nicht mehr.
Konkretere naturwissenschaftliche Hinweise, die man solchen philosophischen Aussagen hätte gegenüber stellen können, hat es bis zum Jahr 2013 - nach Kenntnis des Verfasers dieser Zeilen - nicht gegeben. Und genau 90 Jahre nach der ersten Formulierung von Seiten der Philosophie (7) legt der namhafte Paläontologe Simon Conway Morris genau für eine solche These rein naturwissenschaftliche Argumente vor. Aber man schaue genau hin. Im Leben des Simon Conway Morris war ebenso erstaunlich "früh" alles da, wie in den Organismen, die er untersucht. Denn schon in seinem 2003 veröffentlichten grundlegenden Buch "Life's Solution - Inevitable Humans in a Lonely Universe" finden sich die Worte (4, S. 301):
Die Wirklichkeit der Konvergenz bringt vier Implikationen für die Evolution mit sich, insbesondere die unausweichliche Notwendigkeit, die Themen zu überdenken der Anpassung, von Trends, des Fortschritts und (ein Gegenstand, der überraschenderweise vernachlässigt wurde): ob die Evolution zumindest lokal ihre Potentiale erschöpfen kann.
Soweit übersehbar spricht er in seinem Buch von 2003 diese letztere Implikation ansonsten gar nicht weiter an. Auf diese Implikation ist er also erst zehn Jahre später erstmals umfangreicher zu sprechen gekommen in einem Aufsatz aus dem Jahr 2013. Und dabei scheint er die Annahme längst aufgegeben zu haben, daß die Evolution nur "lokal" ihre Potentiale erschöpfen kann. (Oder meinte er mit "lokal" die Erde und die Region des Universums, in der sie angesiedelt ist?)
"Das Leben ist ebenso fein abgestimmt wie der Rest des Universums"
Simon Conway Morris hat - wie wir gerade entdecken - auch einen eigenen Internetblog "Map of Life", sowie eine Internetseite ("Map of Life"). In seinem Buch "The Runes of Evolution", das letztes Jahr erschien, schreibt er (5, S. 6):
What also emerges is the astonishing
sensitivity of these (and many other)
evolutionary systems. Repeatedly we find a
breathtaking precision of operation, be it the
operation of the Johnston’s organ (a sort of
ear) of the mosquito or the infrared detector
of the buprestid fire-beetle. One can make
a general argument that in their different
ways these sensory systems have effectively
reached the limits of the physical universe, at
least as far as biology is concerned.
Also auch die "atemberaubende Präzision" komplizierter Sinnesorgane von Tieren ist für ihn ein Hinweis darauf, daß diese die Grenzen des physikalischen Universums erreicht haben, zumindest soweit das etwas mit Biologie zu tun hat.
Wie deutlich geworden ist, ist der vorliegenden Blogartikel nur eine erste Sichtung dieser neuen Gedankenwelt. Sie ist in den künftigen Wochen nach und nach noch zu ergänzen und zu vervollständigen. Da aber schon mehrere Wochenenden dazu benutzt wurden, diesen Blogartikel soweit zu schreiben, soll er erst einmal in dieser Unvollständigkeit veröffentlicht werden.